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Spatial solitons in chiral media
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We study theoretically the nonlinear propagation of a narrow optical wave packet through a cholesteric
liquid crystal. We derive the equations governing the weakly nonlinear dynamics of an optical field by taking
into account the coupling with the liquid crystal. We constructed the solution as the superposition of four
narrow wave packets centered around the linear eigenmodes of the helical structure whose corresponding
envelopesA are slowly varying functions of their arguments. We found a system of four coupled equations to
describe the resulting vector wave packet which has some integration constants and that under special condi-
tions reduces to the nonlinear Schrédinger equation with space-dependent coefficients. We solved this equation
both, using a variational approach and performing numerical calculations. We calculated analytically the
soliton spatial scales, the transported power, the nonlinear refraction index, and its wavelength dependence,
showing that this has its maxima at the edges of the reflection band. We also exhibit the existence of some
other exact but non-self-focused solutions.
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I. INTRODUCTION in the literature on either finite or infinite samples. In particu-
) lar, in recent years helical structures with defects have been
In the last decade there has been great attention to thensidered because they present a defect mode which accu-
nonlinear optics of nematic liquid crystals because of themulates the energy around its defect plane and might be use-
giant optical nonlinearity of these materials—a factor offul in designing low threshold lasefd3]. Even though the
6-10 orders of magnitude larggl] than that of doped energy accumulation around this defect implies a large opti-
glasses—and the strong nonlinear effe@swhich can be  cal field, nonlinear optical studies of cholesterics have been
achieved in nematic liquid crystals by using lasers with mod-scarcely considerefl4] so far in the literature.
erate intensity(KW/cm?). Pioneering experimentg3] for The aim of this paper is to derive the nonlinear equation
continuous beams showed the presence of steady spatial pgverning the structure of a spatial optical wave packet
terns for cylindrical[3] and planaf4] geometries. The basic propagating axially in a cholesteric liquid crystal without
mechanism that governs these time-independent patterns déssipation. The outline of this paper is as follows. In Sec. Il
the balance between the nonlinear refractiself-focusing  we state the governing coupled equations for the interaction
and the spatial diffraction of the nematic liquid crystal. A between the electromagnetic field and the cholesteric liquid
study of these experiments using separation of sd&lg}  crystal. In Sec. Il we restrict our model to the weakly non-
shows that the field amplitude at the center of a Gaussialinear limit and deduce the amplitude equation for a vector
beam (inner solution follows a nonlocal nonlinear wave packet whose components are narrow wave packets
Schrédinger(NLS) equation, which is able to describe the centered around the linear eigenmodes of the helical struc-
undulation and filamentation observed in the experimentsture. In Sec. IV we show that the analogs of the two first
Some more recent work reported the observation and modonserved quantities of the nonlinear Schrédinger equation
eling of solitons with arbitrary nonlocality in planar nematic are satisfied as well as some others coming from a Lagrang-
liquid crystal cells[7]. ian formulation. In Sec. V we show that there exist various
A different phenomenon is the propagation of wave pack-particular solutions showing no self-focusing and found that
ets, instead of continuous beams. In this case there exists ti@der certain condition we obtain the nonlinear Schrodinger
possibility of stable and robust solitary wave solutignp-  equation with spatially dependent coefficients. We solve it
tical solitong, when the equilibrium between dispersion andboth numerically by using a variation of the split step
self-focusing is reached. This possibility for plarj8t and  method and analytically by using the variational approxima-
cylindrical [9] waveguides with and without dissipation in a tion. We find analytically the soliton spatial scales, the trans-
specific configuration has been previously considered. ported power, the nonlinear refraction index, and its wave-
Other interesting liquid crystal phases are cholesteridength dependence. We close our paper by summarizing our
which due to their peculiar optical properties have been thevork. We also include three appendixes where(ajedefine
object of intense research during more than one ceiffily  all the quantities involved for writing Maxwell’s equation in
Moreover, exact solutions for the electromagnetic axiathe Marcuvitz Schwinger representatiaib) write the ex-
propagation were found by Kafd1] and Nityanandg12],  plicit expression in matrix form for the well known linear
which exhibit the presence of a frequency gap in which twosolution for the helical structure, argd) calculate the matri-
of the four eigenwaves are evanescent. Linear electromages involved in the vector amplitude equation we derived
netic propagation in these structures has been much studié¢@re.
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II. BASIC EQUATIONS E. < 4 >
Let us consider a cholesteric liquid crystal cell of thick- 7z A= 247 A SSS=247 100,
nessL whose symmetry axis is perpendicular to the cell E, k " C%O%&\”:s?g‘fféﬁ%%o%g \322%%%%08 &\
plates as shown in Fig. 1. We restrict the director’s field to @)%OM\ ggpﬂﬁﬂj% U \kﬁg%pj !jﬁo 00000“
the x-y plane as given byi(6(2))=(cosé(z),sin6(z),0). In \0000%\\\&344%0& \2\@“&; \f’dd%%@%%,
h f [ fields th ilibri fi ion i A DR NS 740770
the absence of external fields the equilibrium configuration is o\b%‘m\‘f §€9%;@ 90000\\\\\ Q‘Qq%ffﬂz@o&o

determined by the minimum of the Helmholtz free energy for ol
cholesterics given by15]

1
FC:EJ[Kl(V-ﬁ)2+K2(ﬁ- V X fAi+Q)>

+K(A X V X h)?]dV, (1)

whereK, K,, K5 are the elastic constants aqdks the chiral-
ity of the medium.
It i$ well known that.FC is minimized by a Cpnfiguration FIG. 1. A laser beam of wavelength propagates in a sample
C!escrlb.ed byb(z)=qz, with ‘Fzﬂp andp the pitch or spa- of chiral material of widthL and spatial periogh. Here we consi-
tial period of the cholesteric helical structure. der a beam propagating in the axial directidrrepresents the av-
If we propagate electromagnetic fiellsand H through  erage orientation of the molecules in each plane perpendicular to
the cell, we have to add tB. the electromagnetic energy the axisz.
density —%Re{E-D*+B-H*} which takes into account the in-
teraction of these fields with the liquid crystal. It allow us to free energy but only by replacing the cholesteric pigchy
write the total free energy density as that obtained after distorting the helix by this field.
The presence of strong enough optical fields modifies the
F=F.- }f Re[E-D' +B-HldV helical structure. The new equilibrium configuration is ob-
2 tained by minimizing the total free enerdy given by Eq.

1 (2); it yields
:EJ[Kl(V-ﬁ)th(ﬁ-Vxﬁ+q)2 20 1/20 26\ o2 .
- a_gz"c?(ﬁ+ﬁ) + el - lg[dsin 20

+Ka(A XV X ﬁ)2—§80(8L|E|2+8a|ﬁ.E|2) o o2
- (&, + g8)cos ]+ — p (I? = hy[?)sin 26

1 HI2 A 2
- 2:“’0(/-”L|H| + palf . H )]dV- (2 - (h;hy + h;hX)COS 2], (6)

Here g and u, are the dielectric permittivity and magnetic where we used the approximation of equal elastic constants
permeability of the vacuum, respectively. In writing E8) ~ K1=K;=K3=K and we have written the fields in terms of the
we have assumed that the medium follows the magnetic andimensionless variables

dielectric constitutive relations

s Z(—)1/2E _ D 7-12n
- = - — e=—= , d=—= ,
D=epe-E, B=puou-H, ) e e & €08
characterized by the uniaxial dielectric and magnetic tensors — _ — _
_ . — H zZZ"H — B z5VB
=&, & + e, (4) h=—= . b=—= : (7)
€ € € Mo
K= ey 8+ pahi. (5 with e=25""F,, E, the amplitude of the initial beam, and

Zo=\ ol €9, c=1/\eouo the impedance and speed of light
dn free space{=qz and ?=¢€5/(2cKcf) is a dimension-
less parameter which is equal to the ratio between the elec-
tric field energy density and the elastic energy density of
the cholesteric; that is to say, it is a measure of the coup-
scattering of the optical field. To overcome this effect by!ing between the optical field and the cholestgric. In obtain-
decreasing the correlation length i it is convenient to I"d EQ. (6) we have assumed transverse fields, namely,
apply an additional low frequency electric field perpendicu-e=(e(X,y,z,1),/(x,y,z,t),0)  and  h=(h(x,y,z1),

lar to the helix axis. The intensity of this latter field should hy(x,y,z,t),0). It is worth stressing that by taking both trans-
be much smaller than the critical value for untwisting theverse components of the electromagnetic fields nonvanish-
cholesterid15]. Here, we will not consider the effect of the ing, we are tacitly excluding the case for which the field is
extra field by adding its corresponding contribution to theperpendicular to the director and avoiding in turn a possible

Heree, andu, denote the dielectric permittivity and mag-
netic susceptibility perpendicular to the nematic axis an
ea=¢g—¢e, and u,=w—u, are the dielectric and magnetic
anisotropies of the medium, respectively.

It is well known that the thermal fluctuations finduce
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first order configurational transitiaiffrréedericksz transition ~ d2¢®(y) 1 5 . . .
In this way, we are not only getting rid of a threshold field g2 - Esa[(|ex| - |ey[)sin 2 - (e,e, + ,8)c0s Z]
but also turning around a reorientation bistability. It is there-

fore necessary to have a beam which impinges the choles- +} hl2 = Ih|2)sin 27 = (K h. + h'h.)cos
teric sample obliquely to the anchoring direction and to the 2'%‘[(| 7= Inyysin 2= (hhy + hyhcos Z1,
low frequency stabilizing electric field. (9)

Here, we restrict ourselves to analyze only the weakly .
nonlinear limit(Kerr medium). This implies thair<1 which ~ Which leads to
amounts to requiring an optical energy density much smaller J0() = 1 5 s . «
than the elastic energy density so that we can solve(&q. (0)=- gsa[(|ex| ~ley9sin 27 - (e,e, + &8 )cos Z]
by successive approximations w?. This can be accom-

. - 1 * *
plished by assuming that _ g,U«a[(|hx|2 _ |hy|2)sin 2 - (hyh, + hih,)cos Z]
+B{+C, (10
0(0) = 09() + 20V () + * 02 () + - - (8) whereB and C are integration constants.

Let us assume that the cholesteric is to satisfy hard an-
choring boundary conditions at both plates given #iy
=0)=6(z=L)=0. This can be valid only if the cholesteric

where the zeroth order approximatief?’()=¢ is corrected slab contains an integer number of spatial periods such
by the successive ordetgd(¢), o*6?(9),.... Notice on that gL=2mar. HenceB=0 andC |s.completely determl_ned
the one hand that by solving iteratively E@) with 6© a so that the solution of Eq6) up to first order can be written

{-dependent function we find correctiof?, ¢?, ..., which as 0(2) ~ 09(2) + 0’269 (2)

have the same dependence. Hence, by assuming small con- '

figuration distortions we retain the layered structure or one =qz+o'*f(2) (11)
dependence of the cholesteric helix. On the other hand, fyhereo’2= ¢2/8 and

o<<1 the presence of the powers @fimplies that the con- B ) o . .

tribution of the higher order terms is smaller than the domi- f(2) = ea (&)° ~|ed?)sin 212+ (e,8, + € ) (COS 2z~ 1)]

nant term. Thus_, in.the weakly nonlinear regime, we can +Ma[(|hx|2—|hy|2)5in 2qz+(h;hy+ h;hx)
keep the approximatio(8) up to first order ino. Interaction
between the optical field and the reorientation in the liquid X(cos 21z-1)]. (12)

crystal stronger than the weakly nonlinear limit gives rise to  Notice that the parametar’? is directly related to the
different hierarchies of partial differential equations of highercoupling parameter?; in what follows, we will take the
order. Such a system has been studied previously for a nerformer as the expansion parameter and to simplify notation
atic fiber[16]. In that case, the analysis allows the authors towe will suppress the prime om. Therefore Eq(11) provides
derive a complex modified Korteweg—de Vries equationus the cholesteric configuration distorted by the given fields.
whose solutions are doubled embedded solitons describing is convenient to expres&z) as the bilinear form

ultrafast pulses.

_ * * * * i i T
By inserting this expression in E¢) we find the follow- f(2) = (@uhag,hy) - M - (8uhweyhy), (13
ing differential equation that satisfies?(¢): where
|
—-g,8in 292 0 g4(cos z-1) 0
0 - i 0 -1
M = Mq SIN 202 - Ha(cOos 22— 1) ’ (14)
gy(cos yz-1) 0 £,Sin 29z 0
0 ma(cos Zyz-1) 0 Ma SN 20z
[
Here the superscript denotes the transpose of the involved T— e T
vector or matrix. (eahyey.hy) " = ylr, Dexdi(k -1 - wb)], (15

Let us introduce a dimensionless four-component vectojvhere the subscript refers to the transverse component of
i, normalized to the initial amplitudey, formed by the har-  the vectors. Then we can write Maxwell's equations using
monic field amplitudeg andh given by the Marcuvitz-Schwingerepresentation agl7]
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(921,// =j koJ4L l,lf,

(16)

Whereaij:(?z/axiaxj with i, j=X, y. Hereky=w/c is the wave
number in free space, arld andL are 4X 4 matrices given

PHYSICAL REVIEW E7Q, 061701(2004)

Egs. (6) and (16). However, as said above, we restrict our
analysis to consider only the weakly nonlinear regime. With
this aim we substituté(z) given by Eq.(11) into Eqgs.(16)
and expand the result in Taylor series up to first ordesin

in Appendix A. Next we derive the amplitude equation It allows us to write the matrit. in the form

which governs a narrow wave packet.

L=wm— Dt'Y;letTv 17
Ill. AMPLITUDE EQUATION
where
In general the nonlinear interaction between the optical 0
field and the cholesteric for axial propagation is governed by Y= Yo+ oo f(@My, (18
|
—g4Sin 20z 0 £,C0S 3z 0
0 — Mo SiN 202 0 Cos 4z
'yg:U_lDU, M]_: Ma m - Ma 2‘] , (19)
£,C0S )z 0 g5 SN 29z 0
0 M4 COS Az 0 MaSINn 20z
[
-sinqz 0 cosqgz O Notice that the last two terms account for the_nonlinearity
cosqz 0 singz 0 end the transverse dependence of the ampliw,deesp_ec—
U= 0 —singz 0 cosaz |’ (200  tively. Thus, by neglecting these two terms we restrict Eq.
q ) q (24) to describing axial linear propagation, which is a prob-
0 €0sqz 0 singz lem extensively studied a long time aft8] whose solution
is analytical. Because the matrixg,U™! is formed by con-
g, 0 0 O stant coefficients the linear problem can be formulated as
0 & 0 O an eigensystem whose four eigenvectors are plane waves
D= ! (21) having two different wave numbeks (i=1,2) and two di-
0 0 u O rections = (see Appendix B These modes satisfy a well
0 0 0 known dispersion relation and two of them have a band gap

Here we have taken advantage of the fact that for axia
propagation the elements gv;zl remain constants so that the
only dependence omor 6(z) of Eq.(16) lies in the elements
of the matrix v, in which we have inserted Eql1). We
have also expressed explicitlyﬁ in terms of the similarity
transformation defined by the rotatidh which reIates;z?t
with the diagonal matridD. Under the above weakly nonlin-

ear approximation Eq.16) turns out to be

ikodsd,ip+ KIU™DU + o?f(2)M ]y — KZD, 72D 4= 0.

(22)

. . /_ |
]‘or o within w,=qc/Veu, and w,=qc/Ve, u, .
If we call T-«a the matrix whose columns are these eigen-
vectors we can write the general solution for axial linear
propagation asy;,=T-a-AT, where AT is a coordinate-
dependent column vector whose components are

A(X,D,2) = (AL ALALLA,). (25

The dimensionless amplitud¥, which represents the en-
velope of a narrow wave packet of widit= (k—ky)/ky<<1
whose central wave vector kg, is assumed to be a slowly
varying function of its argument&’=«kx, Y=«ky, Z=«z.

Itis useful to express this equation in a system of coordinate§leré « is a small parameter that measures the statistical dis-

rotating with the helix of the cholesteric for which, is

diagonal, that is, we introduce the variable

¥=Uy,

(23)

persion of the wave packet distribution in the Fourier space.
In this sense the wave packet is formed by a superposition of
plane waves whose wave vectors are not necessarily aligned
with the z axis but constrained to a narrow cone whose axis
is parallel to the same axis. Alternatively, our wave packet

which after performing the derivatives and doing some simmgay also describe an incident beam showing isotropic fluc-

plification can be written as
0 = —ikoJadh — ikoda(Ua,U ™) g + k3D + KBt (2)
X(UM,U™) g~ K(UD,%;;D{U Yy,

Here we have used the identityd,U~1=-J, for a rotation.

(24)

tuations, in the plane perpendicular to the propagation direc-
tion, on its wave vector, if these fluctuations have a statistical
dispersionk.

We intentionally select the matching conditia* o be-
cause it has been shown that up6s3) this choice leads to
the standard nonlinear Schrodinger equaf®Ad9). It should
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be pointed out that due to this matching condition, once the 1 0 0 O

optical intensity has been taken, the spectral dispersion of the 0-10 0

packetx should assume the same value. N= (31
It is noteworthy that this model may be generalized by 0 0 10

taking these two small expansion parameters related by 0 0 0 -1

=¢?, with a a positive number. Thea=1/2 represents a . . . .
wider anda=2 a narrower wave packet, but ordy 1 leads Equation(27) governs the nonlinear interaction among four
to the NLS equation for a Kerr-like meaiu{ﬂG] Note that Wave packets whose central wave vectors are centered

the presence of higher powers @fimplies that these higher qrognd the four gxisting I?ngar ejgenyvaves in a cholesteric
order contributions are smaller than the dominant terml'qu'c.j crystal. Notice th_at It Is written in terms of the><44_
which describes a small-amplitude narrow Wavepacket.matr'ceSM’\lL anth deflngd n Appendlx c that chgracterlze
Thus. the trial solution the self-focusing or nonlinearity and the diffraction of the

' vector wave packet. In the next section we formulate a La-
grangian representation to obtain the conserved quantities of

this vector wave packet.

represents the superposition of four narrow wave packets
whose central wave vectors lie around those of the linear IV. CONSERVED QUANTITIES

: .
eigenvectorsT . Then, each component & is the enve- It is well known that the NLS equation satisfies an infinite
lope of each wave packet associated with each linear eigeferarchy of conserved quantities. Here, for our vector am-

mode. To simplify notation, in what follows we keep the pji,de equation we shall prove that the analogs to the two
original coordinates oA. _ first conserved constants of this hierarchy are satisfied. To
Here we have used the superscriptto represent the g end, let us multiply Eq(27) by BT, take the complex

propagation to the right and to the left of the helix and the. i gate of the resulting expression, and subtract it from the
subscripts 1, 2 to distinguish between the modes that havﬁonconjugated expression to obtain

and do not have a band gap.
Substitution of Eq(26) into Eq.(24) allows us to write ikoB™ -N-3,B+ikoB-N-3,B™ +B™ - k3M, -B

$=T a-AT (26)

ikoN - 3,8+ k2N - R B+ KM, - B - K2o2f(2)My, - B=0, ~B-kgM{ BT =0, (32
(27) where we have employed the fact thbty =M/, and
f*(2)=f(2) sinceM is also a Hermitian matrix. Integration of
whereB=a-A, f(2=B"T-M-B, My, =T"-U-M;-U™1.T, M;  Eq.(32) over the whole domain of the transverse coordinates
=Th.U -Dt-ygzl-DtT-U‘l-T, and R; is the diagonal matrix x andy leads to
whose elements’ (i=1,2) are the eigenvalues &, that is

to say, (d/d2) f J B™ -N-Bdxdy=0, (33
rI 0 0 O . . . . .
_ which arises from the fact tha, is also Hermitian. This can
R= rn 00 (29) be easily shown by noting thadl; is given by M;=M| 14,
0 0r, O +M 20y, +M 30y, whereM, (k=1,2,3 are in turn Hermit-
00 0t ian matrices such that the commutatgeg, M ]=0 (i,]

=x,y) vanish. It is important to remark that E(83) estab-
In writing Eq. (27) we have consistently taken into account lishes the energy conservation along thdirection, as can
that T-« satisfies the linear propagation equation notedoe seen by recalling that the vector wave padketas nor-

above: malized to unitz component of its corresponding Poynting
vector with N, given by Eq.(31), providing the sense of
—ikodadT - @) — ikgdy(UaU (T - ) + k3D(T - @) = 0, propagation.
(29) To find the second integration constant, we rewrite EQ.

(32) in the form

and used the following orthogonality relation: 1
‘ 0=0,B"™ -N-B) + 4, BT*-<M|_1&X+—M,_3(9y)B
TH.3,- T =N, (30) 2

1 *
which was proved[20] by assuming energy conservation —B'<ML1F7X+EML307y)BT }
along thez axis. HereN is a diagonal matrix whose elements
are the norms of the component of the Poynting vector - 1
associated with each of the linear eigenvectors. However, if +dy| BT - Miady + EML3f7x B
we previously divide each eigenmode kiN;| and choose L
the positive(negative sign for the waves propagating to the _R. = T+
right (left) A, A3, the matrixN takes the form B (ML2&V+ 2ML30X>B ] ' 39
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Thus, upon integration over the whole transverse domain and Following Noether’'s theorem, itl£,./dx*=0 then the

after using Eq(33) we find that the current density vectdr Movement constants are given by

should be divergenceless: or
ac

T =

B)\’B - EaC5Ck,,B' (38)

‘J:f f |:BT*'(ML1(9x+_ML3(?y>B By o
—o0 e For our systenu,./dx=dL,./dy=0 so that just the follow-
1 ing components oT*? are conserved:
- B ' (MLl&X+ EML36y>BT*!

*

1
TxX = - k(Z)B,X : (M LlB,X + EM LBB,y>

1
BT*-<|\/| a+ =M a)B . 1.,
e 2 L _k(2) B,xML1+§B,yML3 'B,X_LaC!

1 «
- B - (MLZ(gy + EML?,(?X> BT :|dX dy (35) l
™=- kgBTy ’ (MLZB,y + _ML3B,X)
That is, this current is conserved after traversing the choles- 2
teric sample. of s 1,
We can find further integration constants by calculating ko ByM 2+ EB,XMLS By = Lac

the Lagrangian densitg for our system since from this we

can derive conserved quantities by using the symmetries of 1

the system an.d Noether’s t.heore[ml]. We can get a La- ™= —kéB,y . (MLlB,x + —MLgB,y>
grangian density for Eq27) if we further approximate the

cholesteric configuration given by E@l2) which strictly 1

satisfies the hard anchoring boundary conditions. This - k(Z)(B*xML1+ _B*yML3) By,
means, by neglecting the terms arising from the integration ' 2
constantC the mentioned conditions are no longer satisfied

exactly, but consistently approximated in the weakly nonlin- o 1L2R" 1

ear limit. Moreover, if we are to consider cholesteric samples T7=—koBx | MiBy+ 2ML3B'X

containing a large number of spatial periogs(~50) the 1

effect of this approximation on the boundary condition is —k<2)<B,*yML2+—B,*XML3> ‘B, (39)
almost negligible. The latter approximation amounts to re- 2

placingM by M, given by Eqs(14) _and (19, respectively. . After subtraction of the component&* andTYY, we arrive at
Hencef(z) can now be expressed in the coordinate rotating '

system as 2 1 of L«
. . TY=-ko| M 1Bx+ -M 3B, |B, — k| B,M 4
f(2) =B T(TTUM,U™1T)B = B" ™M, B. (36) 2
To find the Lagrangian density of E(R7) it should be ob- + EB* ML3>B + k(2)<MLZB + 1ML3B )B*
served, on the one hand, that the coefficients of the two first 27 3 Y2 Wkl

terms are constant matrices while the coefficient of the third 1

one (diffraction term) is only z dependent. This allows us to + k%( BTyM Lot —BTXM ,_3> By (40)
obtain them by taking the variational derivative of the La- 2

grangian density, very similar to that of the nonlineargecause of its simplicity we shall use this particular move-

Schrodinger equation. On the other hand, the nonlinear terfent constant to check the convergence of the numerical
of the same equation can be obtained by calculating the dey|culations we perform below.

rivative d[f(z)]2/9BT. Therefore the corresponding Lagrang-
lan densityLq is V. SOME PARTICULAR SOLUTIONS
Lac= }iko(B* "N-B,-B-N-B)+k3B-N-R-B* Some interesting features of the nonlinear interaction gov-
2 ' ' erned by Eq(27) arise from the explicit form oMy, which
1 has a 22 block matrix structure with vanishing diagonal
- =02 (2) - k(z)( By M1 By+B MB, blocks. A direct consequence of this structure is that a wave
2 packet centered around a single linear eigenmode does not
1., . have nonlinear self-focusing so that a pure wave packet
+ EB,yMLBB,X+ EB,XMLSB,y>’ (37 which enters the sample spreads as it advances along the
helix direction. The same happens when the wave packet is
where we have introduced the abbreviatiVix,=B, k  formed by the superposition of either the mo@§sandB; or
=1,2,3, and used the fact thatM{=Mg1d+M 2d)y B, and B,, for which we combine modes traveling to the
+M_ 30,y right and to the left. Hence, the nonlinear term of E2V) is
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nonvanishing either when we mix modes propagating in the %

. A . D(Z') = 2 ’ 2 O ’
same direction or when they have different wave numbers. (@) =kn(z), az—2m D zZ, az—afgZ,
Further properties of this nonlinear interaction can be de-

rived by calculatingf(2), that is, (48)
f(2) =i{my(BIB; - By By) + my(B1B; — By B;) + my(B1By Y(z') = sird(azq?),
- By By) +my(BiB; - B; By)}. (41)  and the sample width is now’=L/z, It is interesting to

. . . mention that in the case of a standard NLS equaxiprep-
This expression shows tha(z) vanishes even though we resents the width of the optical stripe at which the self-

assume the presence of the four wave packets, unless there ~ . dth ial diffraction bal h other. H
exists a phase mismatch between two of the wave packet ocusing and the spatial difiraction balance each other. How-
<§,Ver, in our case there exists a longitudinal spatial

This expression also shows that another spreading SOlu“O(ﬂ]e endence in the equation’s coefficients which makes the
(without self-focusing of Eq. (27) is obtained if we take the P q

same amplitude for all the wave packets=B;=B;=B; and width stripe oscillate with a spatial scalg
; : s Again, to simplify notation, in what follows we suppress

the phase mismatch between the right propagating Wavg . Srime in E (45)
packetsBiB; —B; B; equal to minus that of the left propa- P 459
gating ones (BB, -B; B;).

As a simple example of a self-focusing solution, let us A. Numerical solution method
restrict ourselves to considering only two propagating eigen-
modesB;=expiaz)B; having a phase mismatch. If we

take only one transverse coordinate amplitude, we arrive a

The numerical procedure, called the split-step method, to
solve the self-focusinfyy(z) <0] NLS equation when its co-
efficients are constants is well establistisde, for example,

2ikqd,B1 + K3(n; + n} — alky) By + K37(2)6, B [19,22). Here, we extend this method to consider the defo-
22 2 et cusing casd y(z) >0] such that both coefficient®(z) and
Akomio? sinf(az)|By|B; =0, (42) v(z) arez dependent. Following the original papd3,24,

the dark soliton of the NLS equation is given by the follow-

where
ing hyperbolic tangenprofile:
1
7(2) = —{[Cog2 + C o3 + 2C5r 1T, cOY 2) |cOS(q2) 7 N
h2 2201 12/ 2 520112 G(X,Z) =Aptan %AOX +ivy1 _A(2)1 (49)
+[Coar § + Cpar 3+ 2Cs1r 115 O a2) [sirP(g2)
) ) whereA, is an arbitrary amplitude such that the pulse width
+ Cs312 SiN(az)sin(2g2)}. (43 s proportional toA,*\D(2)/ y(z). Notice from this expres-

Then, recalling thaB}=A} exp(ikonjz) and introducing sion that the initial pulse is localized a0 whose mass
the variableG=A! exf—(iky/2)(ns - a/ko)Z] we find the fol- ~ center is also at=0.

lowing nonlinear Schrédinger equation with spatially depen- We assume the initial profile of Eg49) to integrate Eq.
dent coefficients: (45) numerically by using the split-step method which was

performed using a lattice array whose transverse and longi-
) ko ) tudinal steps ar&x=10/32 andAz=1/8000.
19,G + E”(Z)ﬁxva_ 2kgmio”? sin?(az)|G’G = 0. (44) Our results were obtained by using values for a sample
with pitch p=0.29 um, width L=5.2 um, dielectric permit-
It is necessary to recall that, as said above, the amplitudgvities ¢=2.62, ¢, =2.31, and elastic constarik=5.2
G in the previous equation is dimensionless with normaliza-x 1012 N. The cholesteric liquid crystals used were made by
tion €. mixing Merck ZLI 2293 liquid crystals and ZLI 811 chiral
Equation(44) can be rewritten in terms of dimensionless dopants in the ratio of 2:[25]. We restrict our calculation to
variables as values within the visible range and outside of the band gap.
1 It is well known that in the visible range the magnetic aniso-
i0,G+=D(Z')dy G- ¥Z)|G*’G=0, (45) tropy w4 is nearly equal to zero; we here takg=0.1.
2 ’ From the third term in Eq(44) we obtain the nonlinear

refractive indexng™ as[19]

E* (46) chol _ Somipz
% 27 302K,
gc::}egy_)(/xo’ 2/ =2lz, Herex, andz, are space scales For the parameter values given above and optical wave-
lengthhq=0.5 um, n§"*'=3.85x 10-2km/V)?, which is two
1 1 orders of magnitude smaller than in nemat[cgs_m: 1.43
2 v L= > 2 (47) % 10724km/V)? [26]] but five orders larger thans©2=1.2
kamao? 2komé o 28 , _ 2
X 107%(km/V)“. This shows the existence of the expected
and giant nonlinearity for liquid crystalgl]. It also indicates how

P
i
N
i

(50)

3%

2
% 2
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FIG. 2. Plot of dimensionless coefficienlﬁ()\) as a function of ] ] .
wavelengthh. The hatched region represents the band gap which FIG- 3. Plot of dimensionless coefficientS(zya\) and

ranges fromhjn=0.4414m 10 Apae=0.492m. Heremf()\v):o WZmax\) @s functions of wavelength. The value ofz,,y is
when,=0.434um choosen so thaf(za, A) has a maximum.
,=0. .

the twisted structure of the cholesteric liquid crystal, for@mounts to the power transported by the solitons. It can be
which the elastic energy density is larger than that of nematsShown thaf19]
ics, does not allow one easily to distort the sample, and as a
consequence its nonlinearity is smaller than that of nematics.

The nonlinear refractive indexS™ is related to the wave-
length \o, in a nontrivial way, through the coefficiemn?,
which is plotted in Fig. 2. As can be seen, this coefficientwheres, is the transverse area of the sample and initial am-
diverges at both band edges:,=pve, u, and \p,  plitude E; is related with the soliton space widky through
=pyVeuy. This fact can be shown directly by expanding the relationg47) by

m2(\) aroundX i and A\ ey It yields
E.= )\0 8K2 _ )\0 1
07 o V 22" \/ chol*
*"min(_ At )\min)_l/zy Xo gomp 27X n,
(51)

smad N = Amad Y2, If we take the stripe thicknesg=5 um ands,=400 um?,
we obtainE,=2.56x 1° V/m and hence the power (B

Where.ziminmax are given in Appendix C. To understand intu- =3.48 W, which can be produced by a laser of moderate
itively why the system shows these divergences, it is convepower. We should mention thd, is roughly one order of
nient to remark that the Poynting vector of two of the linearmagnitude larger than the power used to induce spatial soli-
eigenmodes vanishes precisely at the band edges so that tfe® in nematicg7]. Taking into accounP, and a beam waist
energy flux is stopped there, the cholesteric distortion is th@0 um we estimate the longitudinal space lengi+3.1
largest, and the nonlinearity as well. Strictly speaking these< 1074 m which is more than one order of magnitude larger
divergences are to be replaced by maxima if the realistithan x,. Thus, to observe this longitudinal oscillation it
small absorption of cholesterics were taken into accountwould be required to have a large sample. We should recall
This analysis exhibits how the nonlinear effects are to behat this is indeed a dark soliton so that these dimensions
enhanced and have their largest response for the band edgearacterize a lower energy density region immersed within
wavelengths. Indeed, these results are in qualitative agre¢he path of the incident beam.
ment with the mirrorless cholesteric lasing experimd¢a@ As said above, the parameter expansimust be suffi-
in which the exciting laser beam and the sample emissiomiently small to validate our results. In effect, by substituting
wavelengths almost coincide with the reflection band edgeshe previously given values we obtairf=0.003. Thus, the

We should also mention that, in contrast to the en-wave packet that we are dealing with is a narrow wave
hancement of the nonlinear effects in the band edges, thegsacket of widthk=+02=0.054 around the central wave vec-
exists a specific valug,, where m? vanishes, that is to tor k.

1
Ps= EsocsoEg, (52)

LAC NI \’5{

say, the nonlinearity disappears and the &) simply As can be noted from Eq45), the coefficientd and y
transforms in a dispersion linear equation. Explicity,  depend on the wavelengitl. Figure 3 show this dependence
:p\f’(q,uleg—EHMH,LL‘,E)/[(e;Ma)(ea—Ma)]:0.434,um. evaluated at one of the multiplepositions where these os-

An important quantity that characterizes these dark solicillatory co-efficients have their maximaya,= 7/ (2azp)].
tons is the powerPg required to generate them, which Notice that these coefficients are of the same order of mag-
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e renormalized integrals of motiof80] from which an appro-
10 '1 \5);?\3}};%}';— = priate Lagrangian density can be obtained to derive(E5).
<K ‘ﬁv Y for the caseD(z2)=y(z)=1. Here, we consider the case in
which D(z) is a function ofz and y(z) =cte. Renormalizing
0.8 1 Eq. (45) by makingG — G exp(-i yz) yields
1
G s iaZG+ED(z)(9XYXG— W|G?-1)G=0, (54)
whose appropriate Lagrangian density is
- c=lcre —GG*)(l—i>
10 ° "2 2 Z IGJ2
-5
1 1
0.016 _= 2_= 2_1\2
< O e ,L@IG - 572 (GF - 1% (55)
5 0.008
0.004 z Now, substitution of3(X, z) jnsarziNt0 £ and integration on
10 0.000 the transversal coordinate,=/”,£(G)dx leads us to the

FIG. 4. The plot shows a dark soliton propagating throughouteﬁecnve Lagrangian

the sample of dimensionless width equallttz,=1.6x 1072, Here B
Lesr=2X5| — AB+tar | —

2 B*
we have taken amplitud@o=1. - —(BZFD + —y) .

3 F
nitude in such a way that there exists a balance between (56)
Self-fOCUSing or n0n|ineari'[y and dif‘fl’action Of the wave The Corresponding equations of motion may be obtained
packet. from the Euler-Lagrange equations
Finally, Fig. 4 shows various dark soliton profiles calcu-
lated from Eq.(45) as a function ofz. As discussed above Ilett d dless _

Eq. (45) predicts that each transverse profile of our solution ap; dz 0pj' =0, Pi=%FB b= b,

has a different widthb which oscillates withz, reaching a ] ) )

maximum valueb,,=%,=5 xm. Notice that, due to the bal- S° that we finally arrive at the following results:

ance between nonlinearity and diffraction, the average effect B'(2)=0

on the incident pulse is to maintain its hyperbolic-tangent-

like profile as it extends in the direction. , —
P x(2) = \yD(DA(2),

B. Variational approximation method
This formalism starts by postulating a trial analytical F(2) =/ LB(Z), (57)
function or ansatz. In the case of the NLS equation a com- D(2)
monly adopted ansa{24,28 that approximates a perturbed \yhich coincide with those given by the analytical solution in

soliton is the caseD(z)=cte,
_ _ : As mentioned above, the pulse width is given By} (2)
G(x,z B tanh F(x +iA, —_——
(X Dansat FO=0)] =\[D(2)/y]BX(2). Taking into account that within a sample
A2+B2=1 (53) of width L there are several spatial periggghe pulse width

will show such oscillations; thus we can assume that the

The variablex represents the transverse coordinate andolution G will just be perturbed by the average of such
the parameters are allowed to be functions of the evolutiomscillations. As a result we can use the trial soluti®d)
variablez. B is the real amplitudeE™ represents the pulse with variable parameters57) and average valueD
width, andxg is the position of the mass center. Governing=(D(2)), y={(¥(2)),
equations for the evolution of free parameters can be ob- 1./1
tained 'by calculatlng aeﬁgctlve Lagranglan',gﬁ by means D= _kg<_)[(%2+ 021)@ +(Cpp+ Clj)rg], (59)
of straightforward integration of theagrangian densityC 2 “\h,
on the transverse coordinates to finally minimizg; with
respect to these parameters. The solution obtained from the
differential equations permit us to know the system behavior Y
[29].

A straightforward analysis shows that a direct application After calculating the average valueB=(D(2)), y
of the variational formalism using the standard Lagrangian=({y(2)) in Eq. (45 we arrive at the nonlinear Schrdédinger
density of the NLS equatiofiy(z) > 0], does not work24] equation with constant coefficients whose exact solution is
so that this method should be modified, for instance, usingjiven by Eq. (49). Direct comparison of both solutions

(59

NI
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shows that the numerical and variational ones are in good APPENDIX A

agreement. Maxwell's equations under the Marcuvitz-Schwinger rep-

resentation Eq(16) are written in terms of the matricek

andL, which are defined as
VI. SUMMARY AND PERSPECTIVES

0 0 0 1
We derived an amplitude equation for describing the 0 0 -1 0
weakly nonlinear interaction between the four wave packets J,=Kron(Jy,Jp) = 0 -1 0 ol (A1)
whose central wave number is centered around those of the
linear electromagnetic modes characterizing a helical struc- 1 0 0O

ture. We showed that under certain approximations the gov-

erning amplitude equations can be derived from a Lagrang- L=y~ (De+ T+ 119 150(D] + T + 9,9, (A2)
ian density and calculated their conserved quantities by using .

their symmetries and Noether’s theorem. We also showe®ith

that the analogs to the two first integrations of the hierarchy Yoy V. y
satisfying the NLS equation are satisfied by our vector wave Vit = ( “ Xy>, Yz = ( XZ>, Yzt = (sz sz)y
packet. Yyx Yy Yyz
We discussed how the nonlinear term of the envelope
equation(27) is such that there exist various exact solutions Dy = (iko) 'kron(J,d,,Jp), 'y = kron(Jox;,J2),
which are not submitted to self-focusing. Under specific con-
ditions of phase mismatch and amplitude relations for a two- a=(d 9,)7, rk=(rx x)7, (A3)
component wave packet we derived a NLS equation with
z-dependent coefficients. We found both numerically and 0 1
analytically(but approximatega dark soliton solution which Jo= (_ 1 0>, RFENRENS (A4)

has a longitudinal oscillating structure that, due to the bal-

ance between nonlinearity and diffraction, the average effect—y;y is the normalized incident wave vector, the super-
on the incident pulse is to maintain its hyperbollc-tangent—script t indicates the adjoint Hermitian, the elements

like profile as it extends in the direction. _ (i,j=x,y,2) of v, ¥z 1. are the following 2< 2 matrices:
For the solitonlike soliton we obtained some important

physical properties as such the nonlinear refractive index (& O

ns™! which we found to be two orders of magnitude smaller %= i) (AS)

than that of nematics but five orders larger than typical val-
ues forn3°2, Hence, our result shows the existence of the-and KrorA,B) represents the Kronecker product with
expected giant nonlinearity for liquid crystals. Additionally, elementsg;B. e; and w;; represent the elements of the
we showed that this giant nonlinearity is enhanced in bothiniaxial dielectric and magnetic tensors shown above by
edges of the band gap as a direct consequence of the fact tHegs. (4) and(5).

the Poynting vector of two of the linear eigenmodes vanishes If we restrict our system to the case when the electromag-
precisely there, so that the energy flux is stopped and theetic wave propagates in directianthrough a sample of
cholesteric distortion is the largest as well as the nonlinearitychiral material thenN;=0 and y,=,,=0. In this way the
Qualitatively, this behavior is in agreement with the mirror- matrix L reduces to
less cholesteric lasing experiments in which the exciting la-

ser beam and the sample emission wavelengths almost coin-

cide with the reflection band edges. Of course, our analysis

was not performed to describe the interaction of the choles- APPENDIX B

teric with two beams having different frequencies like the . ) . .
systems reported in the mentioned experiments; however, the The linear system defined by E@9) which describes the

; chol : near propagation through a cholesteric liquid crystal can be
maxima ofn3™ at the band edges makes plausible a betteexpresseol asd(T-a)/dz=i(w/OA-(T-a), where T-a

theoretical description which remains to be assessed. AR :
We estimated the necessary powerto generate these =41, 41,4, 4) is the matrix whose columns are the nor-

dark solitons. We found that these can be generated by alized eigenvectorg; = (ey,e;,hy,hy) (k=1,2) of the ma-
laser of modest power, namely, of the order-e3.5 W. trix A given by[18]
Finally, we showed that effectively we dealt with a nar-

L =y — Dyy,2D}. (A6)

row wave packet of width=0.054 around the central wave 3 g 0w

vectork,. A=l @ 0 -u O B1)
Our model has not take into account explicitly the un- o - e, 0 -ig

avoidable linear and nonlinear absorption effect. We have 6 O G 0

also ignored the transitory effect induced by the director re-
orientation and hydrodynamical coupling coming with theseHeree;,e, andh;,h, are the components of the electromag-
effects. netic vectors in a rotating frame having one of the axes
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along the optical axis¢; and w; are the principal values af  helix pitch. If we omit the factor eXgiwt), the eigenwaves
and u, respectivelyig=qc/w, whereq=2x/p andp is the  of A are(T-a), =4 explioncz/c) where

nlul/rl - nlulll’l nzuz/rz - n2U2/I’2
o —4inqelr, 4inGelr, - 4in,qelr, 4inyQelr, 82
—iq(uy - dgu)iry —iq(uy— deu)iry —iq(uy—4gu)ir, —iG(uy — dgu)ir, ’

(4G %€+ ue)lry (49 Ze+ ue)lry (49 Ze+ Uye)lr, (49 Ze+ Uz€)/r,

explikgn;2) 0 0 0
0 exp(ikgn;z 0 0
e plikon; 2) o | 83
0 0 explikon;2) 0
0 0 0 explikon,2)
[
and wnﬁ/c (k=1,2) are the corresponding eigenvalues given Fo1 Fag Fos Fog
by Fas Fau Fas Fas
n+2__n—_a +~2+ _ k/2 B4 I\/|L2: * * ’ (CZ)
K =" Me=a+q°+(-)u2. (B4) Fos Fog Fao Foa
In Eq. (B2) we have used the notatian= y4a,q 2+ €2, Uy Fos Fas Fas Fao
=-Ute, U=Ute, ar=(u, +e w)/2, a=2a+eu
tepy, and e=eu -e p, €=(g+e )2, p=(y Fa1 Fss Fss Fse
+u,)/2. Each eigenvector ok appearing in the columns of Fas Fa; Fag Fas
T, Eq. (B2), is normalized such that thecomponent of the Mis=| _- * , and

Poynting vector is unity. Thus, the corresponding norms are

o= Vst = V20 uge; + 4G 2e(uc— Uy 1 + dey) ],

k=1,2.

Notice that for reale; and w;, n? is real according to Egs. M =1 m m, O o | (€3
(B4), and the wave vectolgn are real or purely imaginary. m om0 0
Only the modes 1 show _a band gap fore within 2 71
w1 <@ < w,, Wherew;=qc/Veu, w,=qc/Ve, u,. Here the components; andF;; of these matrices are given
by
APPENDIX C m ,

Here we find explicit expressions for the matrickk _ Gug — up){#4nin €€, + [4G “€ + €(uy + Up — du) |kat
and My, involved in the vector envelope equation given ryfs '
by Eq. (27). By inserting U, T, M;, and D; from
Egs. (20), (B2), (19), and (A3) into expressionsM, C.» COL AZ+ G- SI aZ
=T'.U-Dy-%,2-Df -UL-T and My =T"-U-M;-UL.T, we Fyj= (Gpc08 @ - S g ), (C4)
arrive at

M¢ =M 10+ M2dyy + M 3dyy, (CY £ (cjy co qz+Cppsinf g2 . 1034
where the Hermitian matricéd, ;, M ,, andM 5 are defined 2 h CEsess
by

Ci3€0Sqzsinqgz
Fi1 Fiz Fis Fg F -=M (CH

3] — h ’
F13 Fll FlG F15

Fis Fis F12 Fia |’ c Cio COF (Z+ Cy SIMF (zZ— iCyg COSOZSINQZ

Fie Fis Fi Fi 1k hs ’
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Cs.92= * NiNoUslxe, +T 2(Uy — deum) (U — ey

Ciq COF (Z+ Cyp SIM? qZ+ iCy3 COSQZSINGZ

Fo = N k=5,6,
3
2 2 Cse3=1 (uy = Up){x4n;nyee
Crq COSOZSINQZ—iCys(SiN” qz— cos q2)
W= a a hk3 d d (Co) +[4G %€+ d|(uy + Uy~ dgu) 1u
3

with Cis.0a =  2MNy(UgUy — 160 2€9) €, — 2(16G 4 + UgUped) i)

Ci191 = 1607 G °®e, + (4G %€ + Uy pe) e 1, - 20 4{4€ [~ 4eu® + U(e+ w)]

o ~> ) +uy[— Uy +dee+ wlipy, (C7
Ci1,22 = NI U7 €, + G (Up 1~ dgu)p,,
L , [ 'hyif j odd,
Cu23 = 27 (U7 ,~ 16G°)e, — 2[16G % + Ul,sz | hyif j even,

~G%(U5  — Buy se€; — BUy 1€ + 166/ 1) |t |, ) ) ,
hy=kgrie p, hy=kgrze pu,, hy=Kkgriroe p,,
Cea1=" 16”%,2?1 e, + (4G e+ Uy s, (C9Y

2
_ (& = EJ_/'LJ_):L/Z&
T (et 2

_ 2.2 ~2 2
Ciag2 =~ NI U706, + G (Up 1~ dgu) e,
@9 (e p) —gu)(@+e p),

Ciaga=— 2% (U] ,— 16427 €, — 216G %€ + U] e
L, = (GHMH - EL/LL)lIZ fﬁfg
max (fuﬂu)m 25/262 !

wheret=2542¢, p?+ep [ m—€, (u, +2u) [}

~G%(U5  — Buy se€; — BUy €1 + 166/ 1) |,

Cs.91= * 16nn50 %%, + (4G % + uy€) (4G %€ + Ure ), ,
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