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We study theoretically the nonlinear propagation of a narrow optical wave packet through a cholesteric
liquid crystal. We derive the equations governing the weakly nonlinear dynamics of an optical field by taking
into account the coupling with the liquid crystal. We constructed the solution as the superposition of four
narrow wave packets centered around the linear eigenmodes of the helical structure whose corresponding
envelopesA are slowly varying functions of their arguments. We found a system of four coupled equations to
describe the resulting vector wave packet which has some integration constants and that under special condi-
tions reduces to the nonlinear Schrödinger equation with space-dependent coefficients. We solved this equation
both, using a variational approach and performing numerical calculations. We calculated analytically the
soliton spatial scales, the transported power, the nonlinear refraction index, and its wavelength dependence,
showing that this has its maxima at the edges of the reflection band. We also exhibit the existence of some
other exact but non-self-focused solutions.
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I. INTRODUCTION

In the last decade there has been great attention to the
nonlinear optics of nematic liquid crystals because of the
giant optical nonlinearity of these materials—a factor of
6–10 orders of magnitude larger[1] than that of doped
glasses—and the strong nonlinear effects[2] which can be
achieved in nematic liquid crystals by using lasers with mod-
erate intensitysKW/cm2d. Pioneering experiments[3] for
continuous beams showed the presence of steady spatial pat-
terns for cylindrical[3] and planar[4] geometries. The basic
mechanism that governs these time-independent patterns is
the balance between the nonlinear refraction(self-focusing)
and the spatial diffraction of the nematic liquid crystal. A
study of these experiments using separation of scales[5,6]
shows that the field amplitude at the center of a Gaussian
beam (inner solution) follows a nonlocal nonlinear
Schrödinger(NLS) equation, which is able to describe the
undulation and filamentation observed in the experiments.
Some more recent work reported the observation and mod-
eling of solitons with arbitrary nonlocality in planar nematic
liquid crystal cells[7].

A different phenomenon is the propagation of wave pack-
ets, instead of continuous beams. In this case there exists the
possibility of stable and robust solitary wave solutions(op-
tical solitons), when the equilibrium between dispersion and
self-focusing is reached. This possibility for planar[8] and
cylindrical [9] waveguides with and without dissipation in a
specific configuration has been previously considered.

Other interesting liquid crystal phases are cholesteric
which due to their peculiar optical properties have been the
object of intense research during more than one century[10].
Moreover, exact solutions for the electromagnetic axial
propagation were found by Kats[11] and Nityananda[12],
which exhibit the presence of a frequency gap in which two
of the four eigenwaves are evanescent. Linear electromag-
netic propagation in these structures has been much studied

in the literature on either finite or infinite samples. In particu-
lar, in recent years helical structures with defects have been
considered because they present a defect mode which accu-
mulates the energy around its defect plane and might be use-
ful in designing low threshold lasers[13]. Even though the
energy accumulation around this defect implies a large opti-
cal field, nonlinear optical studies of cholesterics have been
scarcely considered[14] so far in the literature.

The aim of this paper is to derive the nonlinear equation
governing the structure of a spatial optical wave packet
propagating axially in a cholesteric liquid crystal without
dissipation. The outline of this paper is as follows. In Sec. II
we state the governing coupled equations for the interaction
between the electromagnetic field and the cholesteric liquid
crystal. In Sec. III we restrict our model to the weakly non-
linear limit and deduce the amplitude equation for a vector
wave packet whose components are narrow wave packets
centered around the linear eigenmodes of the helical struc-
ture. In Sec. IV we show that the analogs of the two first
conserved quantities of the nonlinear Schrödinger equation
are satisfied as well as some others coming from a Lagrang-
ian formulation. In Sec. V we show that there exist various
particular solutions showing no self-focusing and found that
under certain condition we obtain the nonlinear Schrödinger
equation with spatially dependent coefficients. We solve it
both numerically by using a variation of the split step
method and analytically by using the variational approxima-
tion. We find analytically the soliton spatial scales, the trans-
ported power, the nonlinear refraction index, and its wave-
length dependence. We close our paper by summarizing our
work. We also include three appendixes where we(a) define
all the quantities involved for writing Maxwell’s equation in
the Marcuvitz Schwinger representation,(b) write the ex-
plicit expression in matrix form for the well known linear
solution for the helical structure, and(c) calculate the matri-
ces involved in the vector amplitude equation we derived
here.
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II. BASIC EQUATIONS

Let us consider a cholesteric liquid crystal cell of thick-
nessL whose symmetry axis is perpendicular to the cell
plates as shown in Fig. 1. We restrict the director’s field to
the x-y plane as given byn̂(uszd)=(cosuszd ,sinuszd ,0). In
the absence of external fields the equilibrium configuration is
determined by the minimum of the Helmholtz free energy for
cholesterics given by[15]

Fc =
1

2
E fK1s¹ · n̂d2 + K2sn̂ · ¹ 3 n̂ + qd2

+ K3sn̂ 3 ¹ 3 n̂d2gdV, s1d

whereK1, K2, K3 are the elastic constants andq is the chiral-
ity of the medium.

It is well known thatFc is minimized by a configuration
described byuszd=qz, with q=2p /p andp the pitch or spa-
tial period of the cholesteric helical structure.

If we propagate electromagnetic fieldsĒ and H̄ through
the cell, we have to add toFc the electromagnetic energy

density −1
2RehĒ·D̄* +B̄·H̄*j which takes into account the in-

teraction of these fields with the liquid crystal. It allow us to
write the total free energy density as

F = Fc −
1

2
E RehĒ · D̄* + B̄ · H̄*jdV

=
1

2
E FK1s¹ · n̂d2 + K2sn̂ · ¹3 n̂ + qd2

+ K3sn̂ 3¹3 n̂d2 −
1

2
«0s«'uĒu2 + «aun̂ . Ēu2d

−
1

2
m0sm'uH̄u2 + maun̂ . H̄u2dGdV. s2d

Here «0 and m0 are the dielectric permittivity and magnetic
permeability of the vacuum, respectively. In writing Eq.(2)
we have assumed that the medium follows the magnetic and
dielectric constitutive relations

D̄ = «0«̄ · Ē, B̄ = m0m̄ · H̄, s3d

characterized by the uniaxial dielectric and magnetic tensors

«̄ = «'di j + «an̂n̂, s4d

m̄ = m'di j + man̂n̂. s5d

Here«' andm' denote the dielectric permittivity and mag-
netic susceptibility perpendicular to the nematic axis and
«a=«i−«' and ma=mi−m' are the dielectric and magnetic
anisotropies of the medium, respectively.

It is well known that the thermal fluctuations inn̂ induce
scattering of the optical field. To overcome this effect by
decreasing the correlation length inn̂, it is convenient to
apply an additional low frequency electric field perpendicu-
lar to the helix axis. The intensity of this latter field should
be much smaller than the critical value for untwisting the
cholesteric[15]. Here, we will not consider the effect of the
extra field by adding its corresponding contribution to the

free energy but only by replacing the cholesteric pitchp by
that obtained after distorting the helix by this field.

The presence of strong enough optical fields modifies the
helical structure. The new equilibrium configuration is ob-
tained by minimizing the total free energyF given by Eq.
(2); it yields

]2u

]z2 = −
1

q2S ]2u

]x2 +
]2u

]y2D +
s2

2
«afsuexu2 − ueyu2dsin 2u

− sex
*ey + ey

*exdcos 2ug +
s2

2
mafsuhxu2 − uhyu2dsin 2u

− shx
*hy + hy

*hxdcos 2ug, s6d

where we used the approximation of equal elastic constants
K1=K2=K3=K and we have written the fields in terms of the
dimensionless variables

ē;
Ē
e0

;
Z0

−1/2Ē

e0
, d̄ ;

D̄
e0

;
Z0

−1/2D̄

«0e0
,

h̄ ;
H̄
e0

;
Z0

+1/2H̄

e0
, b̄ ;

B̄
e0

;
Z0

+1/2B̄

m0e0
, s7d

with e0;Z0
−1/2E0, E0 the amplitude of the initial beam, and

Z0=Îm0/«0, c=1/Î«0m0 the impedance and speed of light
in free space.z;qz and s2;e0

2/ s2cKq2d is a dimension-
less parameter which is equal to the ratio between the elec-
tric field energy density and the elastic energy density of
the cholesteric; that is to say, it is a measure of the coup-
ling between the optical field and the cholesteric. In obtain-
ing Eq. (6) we have assumed transverse fields, namely,

ē=(exsx,y,z,td ,eysx,y,z,td ,0) and h̄=(hxsx,y,z,td ,
hysx,y,z,td ,0). It is worth stressing that by taking both trans-
verse components of the electromagnetic fields nonvanish-
ing, we are tacitly excluding the case for which the field is
perpendicular to the director and avoiding in turn a possible

FIG. 1. A laser beam of wavelengthl propagates in a sample
of chiral material of widthL and spatial periodp. Here we consi-
der a beam propagating in the axial direction.n̂ represents the av-
erage orientation of the molecules in each plane perpendicular to
the axisz.
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first order configurational transition(Fréedericksz transition).
In this way, we are not only getting rid of a threshold field
but also turning around a reorientation bistability. It is there-
fore necessary to have a beam which impinges the choles-
teric sample obliquely to the anchoring direction and to the
low frequency stabilizing electric field.

Here, we restrict ourselves to analyze only the weakly
nonlinear limit(Kerr medium). This implies thats!1 which
amounts to requiring an optical energy density much smaller
than the elastic energy density so that we can solve Eq.(6)
by successive approximations ins2. This can be accom-
plished by assuming that

uszd = us0dszd + s2us1dszd + s4us2dszd + ¯ s8d

where the zeroth order approximationus0dszd=z is corrected
by the successive orderss2us1dszd, s4us2dszd , . . .. Notice on
the one hand that by solving iteratively Eq.(9) with us0d a
z-dependent function we find correctionsus1d, us2d , . . ., which
have the same dependence. Hence, by assuming small con-
figuration distortions we retain the layered structure or one
dependence of the cholesteric helix. On the other hand, if
s!1 the presence of the powers ofs implies that the con-
tribution of the higher order terms is smaller than the domi-
nant term. Thus, in the weakly nonlinear regime, we can
keep the approximation(8) up to first order ins. Interaction
between the optical field and the reorientation in the liquid
crystal stronger than the weakly nonlinear limit gives rise to
different hierarchies of partial differential equations of higher
order. Such a system has been studied previously for a nem-
atic fiber[16]. In that case, the analysis allows the authors to
derive a complex modified Korteweg–de Vries equation
whose solutions are doubled embedded solitons describing
ultrafast pulses.

By inserting this expression in Eq.(6) we find the follow-
ing differential equation that satisfiesus1dszd:

d2us1dszd
dz2 =

1

2
«afsuexu2 − ueyu2dsin 2z − sex

*ey + ey
*exdcos 2zg

+
1

2
mafsuhxu2 − uhyu2dsin 2z − shx

*hy + hy
*hxdcos 2zg,

s9d

which leads to

us1dszd = −
1

8
«afsuexu2 − ueyu2dsin 2z − sex

*ey + ey
*exdcos 2zg

−
1

8
mafsuhxu2 − uhyu2dsin 2z − shx

*hy + hy
*hxdcos 2zg

+ Bz + C, s10d

whereB andC are integration constants.
Let us assume that the cholesteric is to satisfy hard an-

choring boundary conditions at both plates given byusz
=0d=usz=Ld=0. This can be valid only if the cholesteric
slab contains an integer numberm of spatial periods such
that qL=2mp. HenceB=0 andC is completely determined
so that the solution of Eq.(6) up to first order can be written
as

uszd < us0dszd + s82us1dszd
=qz+ s82fszd s11d

wheres82;s2/8 and

fszd ; «afsueyu2 − uexu2dsin 2qz+ sex
*ey + ey

*exdscos 2qz− 1dg

+ mafsuhxu2 − uhyu2dsin 2qz+ shx
*hy + hy

*hxd

3scos 2qz− 1dg. s12d

Notice that the parameters82 is directly related to the
coupling parameters2; in what follows, we will take the
former as the expansion parameter and to simplify notation
we will suppress the prime ons. Therefore Eq.(11) provides
us the cholesteric configuration distorted by the given fields.
It is convenient to expressfszd as the bilinear form

fszd = sex
* ,hx

* ,ey
* ,hy

*d · M · sex,hx,ey,hydT, s13d

where

M =1
− «a sin 2qz 0 «ascos 2qz− 1d 0

0 − ma sin 2qz 0 mascos 2qz− 1d
«ascos 2qz− 1d 0 «a sin 2qz 0

0 mascos 2qz− 1d 0 ma sin 2qz
2 , s14d

Here the superscriptT denotes the transpose of the involved
vector or matrix.

Let us introduce a dimensionless four-component vector
c, normalized to the initial amplitudee0, formed by the har-

monic field amplitudesē and h̄ given by

sex,hx,ey,hydT = csr̄ t,zdexpfisk̄t · r̄ t − Ãtdg, s15d

where the subscriptt refers to the transverse component of
the vectors. Then we can write Maxwell’s equations using
the Marcuvitz-Schwingerrepresentation as[17]

SPATIAL SOLITONS IN CHIRAL MEDIA PHYSICAL REVIEW E 70, 061701(2004)

061701-3



]zc = ik0J4Lc, s16d

where]i j =]2/]xi]xj with i, j =x, y. Herek0=Ã /c is the wave
number in free space, andJ4 andL are 434 matrices given
in Appendix A. Next we derive the amplitude equation
which governs a narrow wave packet.

III. AMPLITUDE EQUATION

In general the nonlinear interaction between the optical
field and the cholesteric for axial propagation is governed by

Eqs. (6) and (16). However, as said above, we restrict our
analysis to consider only the weakly nonlinear regime. With
this aim we substituteuszd given by Eq.(11) into Eqs.(16)
and expand the result in Taylor series up to first order ins2.
It allows us to write the matrixL in the form

L = gtt − Dtgzz
−1Dt

†, s17d

where

gtt < gtt
0 + s2fszdM1, s18d

gtt
0 = U−1DU, M1 =1

− «a sin 2qz 0 «a cos 2qz 0

0 − ma sin 2qz 0 ma cos 2qz

«a cos 2qz 0 «a sin 2qz 0

0 ma cos 2qz 0 ma sin 2qz
2 , s19d

U =1
− sinqz 0 cosqz 0

cosqz 0 sinqz 0

0 − sinqz 0 cosqz

0 cosqz 0 sinqz
2 , s20d

D =1
«' 0 0 0

0 «i 0 0

0 0 m' 0

0 0 0 mi

2 . s21d

Here we have taken advantage of the fact that for axial
propagation the elements ofgzz

−1 remain constants so that the
only dependence onn̂ or uszd of Eq. (16) lies in the elements
of the matrix gtt, in which we have inserted Eq.(11). We
have also expressed explicitlygtt

0 in terms of the similarity
transformation defined by the rotationU which relatesgtt

0

with the diagonal matrixD. Under the above weakly nonlin-
ear approximation Eq.(16) turns out to be

ik0J4]zc + k0
2fU−1DU + s2fszdM1gc − k0

2Dtgzz
−1Dt

†c = 0.

s22d

It is useful to express this equation in a system of coordinates
rotating with the helix of the cholesteric for whichgtt is
diagonal, that is, we introduce the variable

c̄ = Uc, s23d

which after performing the derivatives and doing some sim-
plification can be written as

0 = − ik0J4]zc̄ − ik0J4sU]zU
−1dc̄ + k0

2Dc̄ + k0
2s2fszd

3sUM1U
−1dc̄ − k0

2sUDtgzz
−1Dt

†U−1dc̄. s24d

Here we have used the identityUJ4U
−1=−J4 for a rotation.

Notice that the last two terms account for the nonlinearity

and the transverse dependence of the amplitudec̄, respec-
tively. Thus, by neglecting these two terms we restrict Eq.
(24) to describing axial linear propagation, which is a prob-
lem extensively studied a long time ago[18] whose solution
is analytical. Because the matrixU]zU

−1 is formed by con-
stant coefficients the linear problem can be formulated as
an eigensystem whose four eigenvectors are plane waves
having two different wave numberski si =1,2d and two di-
rections6 (see Appendix B). These modes satisfy a well
known dispersion relation and two of them have a band gap
for v within v1=qc/Îeimi andv2=qc/Îe'm'.

If we call T·a the matrix whose columns are these eigen-
vectors we can write the general solution for axial linear

propagation asc̄lin =T·a ·AT, where AT is a coordinate-
dependent column vector whose components are

AsX,Y,Zd = sA1
+,A1

−,A2
+,A2

−d. s25d

The dimensionless amplitudeAT, which represents the en-
velope of a narrow wave packet of widthk;sk−k0d /k0!1
whose central wave vector isk0, is assumed to be a slowly
varying function of its argumentsX;kx, Y;ky, Z;kz.
Herek is a small parameter that measures the statistical dis-
persion of the wave packet distribution in the Fourier space.
In this sense the wave packet is formed by a superposition of
plane waves whose wave vectors are not necessarily aligned
with the z axis but constrained to a narrow cone whose axis
is parallel to the same axis. Alternatively, our wave packet
may also describe an incident beam showing isotropic fluc-
tuations, in the plane perpendicular to the propagation direc-
tion, on its wave vector, if these fluctuations have a statistical
dispersionk.

We intentionally select the matching conditionk=s be-
cause it has been shown that up toOss3d this choice leads to
the standard nonlinear Schrödinger equation[9,19]. It should
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be pointed out that due to this matching condition, once the
optical intensity has been taken, the spectral dispersion of the
packetk should assume the same value.

It is noteworthy that this model may be generalized by
taking these two small expansion parameters related byk
;sa, with a a positive number. Thena=1/2 represents a
wider anda=2 a narrower wave packet, but onlya=1 leads
to the NLS equation for a Kerr-like medium[16]. Note that
the presence of higher powers ofs implies that these higher
order contributions are smaller than the dominant term,
which describes a small-amplitude narrow wavepacket.
Thus, the trial solution

c̄ = T · a ·AT s26d

represents the superposition of four narrow wave packets
whose central wave vectors lie around those of the linear
eigenvectorsT·a. Then, each component ofAT is the enve-
lope of each wave packet associated with each linear eigen-
mode. To simplify notation, in what follows we keep the
original coordinates ofA.

Here we have used the superscript6 to represent the
propagation to the right and to the left of the helix and the
subscripts 1, 2 to distinguish between the modes that have
and do not have a band gap.

Substitution of Eq.(26) into Eq. (24) allows us to write

ik0N · ]zB + k0
2N ·R ·B + k0

2Mt ·B − k0
2s2fszdMNL ·B = 0,

s27d

whereB=a ·A, fszd=B*T·M ·B, MNL=T†·U ·M1·U−1·T, Mt

=T†·U ·Dt ·gzz
−1·Dt

†·U−1·T, and Rij is the diagonal matrix
whose elementsr i

± si =1,2d are the eigenvalues ofT, that is
to say,

R=1
r1

+ 0 0 0

0 r1
− 0 0

0 0 r2
+ 0

0 0 0 r2
−
2 . s28d

In writing Eq. (27) we have consistently taken into account
that T·a satisfies the linear propagation equation noted
above:

− ik0J4]zsT · ad − ik0J4sU]zU
−1dsT · ad + k0

2DsT · ad = 0,

s29d

and used the following orthogonality relation:

Ti
† ·J4 ·Tj = N, s30d

which was proved[20] by assuming energy conservation
along thez axis. HereN is a diagonal matrix whose elements
are the norms of thez component of the Poynting vector
associated with each of the linear eigenvectors. However, if
we previously divide each eigenmode byÎuNiu and choose
the positive(negative) sign for the waves propagating to the
right (left) A1

±, A2
±, the matrixN takes the form

N =1
1 0 0 0

0 − 1 0 0

0 0 1 0

0 0 0 − 1
2 . s31d

Equation(27) governs the nonlinear interaction among four
wave packets whose central wave vectors are centered
around the four existing linear eigenwaves in a cholesteric
liquid crystal. Notice that it is written in terms of the 434
matricesMNL andMt defined in Appendix C that characterize
the self-focusing or nonlinearity and the diffraction of the
vector wave packet. In the next section we formulate a La-
grangian representation to obtain the conserved quantities of
this vector wave packet.

IV. CONSERVED QUANTITIES

It is well known that the NLS equation satisfies an infinite
hierarchy of conserved quantities. Here, for our vector am-
plitude equation we shall prove that the analogs to the two
first conserved constants of this hierarchy are satisfied. To
this end, let us multiply Eq.(27) by BT* , take the complex
conjugate of the resulting expression, and subtract it from the
nonconjugated expression to obtain

ik0B
T* ·N · ]zB + ik0B ·N · ]zB

T* + BT* ·k0
2Mt ·B

− B ·k0
2Mt

T* ·BT* = 0, s32d

where we have employed the fact thatMNL=MNL
T* and

f * szd= fszd sinceM is also a Hermitian matrix. Integration of
Eq. (32) over the whole domain of the transverse coordinates
x andy leads to

sd/dzdE
−`

` E
−`

`

BT* ·N ·B dx dy= 0, s33d

which arises from the fact thatMt is also Hermitian. This can
be easily shown by noting thatMt is given byMt=ML1]xx
+ML2]yy+ML3]xy whereMLk sk=1,2,3d are in turn Hermit-
ian matrices such that the commutatorsf]i j ,MLkg=0 si , j
=x,yd vanish. It is important to remark that Eq.(33) estab-
lishes the energy conservation along thez direction, as can
be seen by recalling that the vector wave packetB was nor-
malized to unitz component of its corresponding Poynting
vector with N, given by Eq.(31), providing the sense of
propagation.

To find the second integration constant, we rewrite Eq.
(32) in the form

0 = ]zsBT* ·N ·Bd + ]xFBT* ·SML1]x +
1

2
ML3]yDB

− B ·SML1]x +
1

2
ML3]yDBT*G

+ ]yFBT* ·SML2]y +
1

2
ML3]xDB

− B ·SML2]y +
1

2
ML3]xDBT*G . s34d
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Thus, upon integration over the whole transverse domain and

after using Eq.(33) we find that the current density vectorJW

should be divergenceless:

JW =E
−`

` E
−`

` FBT* ·SML1]x +
1

2
ML3]yDB

− B ·SML1]x +
1

2
ML3]yDBT*G,

FBT* ·SML2]y +
1

2
ML3]xDB

− B ·SML2]y +
1

2
ML3]xDBT*Gdx dy. s35d

That is, this current is conserved after traversing the choles-
teric sample.

We can find further integration constants by calculating
the Lagrangian densityL for our system since from this we
can derive conserved quantities by using the symmetries of
the system and Noether’s theorem[21]. We can get a La-
grangian density for Eq.(27) if we further approximate the
cholesteric configuration given by Eq.(12) which strictly
satisfies the hard anchoring boundary conditions. This
means, by neglecting the terms arising from the integration
constantC the mentioned conditions are no longer satisfied
exactly, but consistently approximated in the weakly nonlin-
ear limit. Moreover, if we are to consider cholesteric samples
containing a large number of spatial periodsp, s,50) the
effect of this approximation on the boundary condition is
almost negligible. The latter approximation amounts to re-
placingM by M1 given by Eqs.(14) and (19), respectively.
Hencefszd can now be expressed in the coordinate rotating
system as

fszd = B*TsT†UM1U
−1TdB = B*TMNLB. s36d

To find the Lagrangian density of Eq.(27) it should be ob-
served, on the one hand, that the coefficients of the two first
terms are constant matrices while the coefficient of the third
one(diffraction term) is only z dependent. This allows us to
obtain them by taking the variational derivative of the La-
grangian density, very similar to that of the nonlinear
Schrödinger equation. On the other hand, the nonlinear term
of the same equation can be obtained by calculating the de-
rivative ]ffszdg2/]BT. Therefore the corresponding Lagrang-
ian densityLac is

Lac =
1

2
ik0sB * · N ·B,z − B ·N ·B,z

* d + k0
2B ·N ·R ·B *

−
1

2
s2k0

2f82szd − k0
2SB,x

* · ML1 ·B,x + B,y
* ML2B,y

+
1

2
B,y

* ML3B,x +
1

2
B,x

* ML3B,yD , s37d

where we have introduced the abbreviation]B/]xk;B,xk
, k

=1,2,3, and used the fact that Mt=ML1]xx+ML2]yy
+ML3]xy.

Following Noether’s theorem, ifdLac/dxa=0 then the
movement constants are given by

Tab =
]Lac

]Bl,a
Bl,b − Lacda,b. s38d

For our systemdLac/dx=dLac/dy=0 so that just the follow-
ing components ofTab are conserved:

Txx = − k0
2B,x

* ·SML1B,x +
1

2
ML3B,yD

− k0
2SB,x

* ML1 +
1

2
B,y

* ML3D ·B,x − Lac,

Tyy = − k0
2B,y

* ·SML2B,y +
1

2
ML3B,xD

− k0
2SB,y

* ML2 +
1

2
B,x

* ML3D ·B,y − Lac,

Txy = − k0
2B,y

* ·SML1B,x +
1

2
ML3B,yD

− k0
2SB,x

* ML1 +
1

2
B,y

* ML3D ·B,y,

Tyx = − k0
2B,x

* ·SML2B,y +
1

2
ML3B,xD

− k0
2SB,y

* ML2 +
1

2
B,x

* ML3D ·B,x. s39d

After subtraction of the componentsTxx andTyy, we arrive at

Txxyy= − k0
2SML1B,x +

1

2
ML3B,yDB,x

* − k0
2SB,x

* ML1

+
1

2
B,y

* ML3DB,x + k0
2SML2B,y +

1

2
ML3B,xDB,y

*

+ k0
2SB,y

* ML2 +
1

2
B,x

* ML3DB,y. s40d

Because of its simplicity we shall use this particular move-
ment constant to check the convergence of the numerical
calculations we perform below.

V. SOME PARTICULAR SOLUTIONS

Some interesting features of the nonlinear interaction gov-
erned by Eq.(27) arise from the explicit form ofMNL which
has a 232 block matrix structure with vanishing diagonal
blocks. A direct consequence of this structure is that a wave
packet centered around a single linear eigenmode does not
have nonlinear self-focusing so that a pure wave packet
which enters the sample spreads as it advances along the
helix direction. The same happens when the wave packet is
formed by the superposition of either the modesB1

+ andB1
− or

B2
+ and B2

−, for which we combine modes traveling to the
right and to the left. Hence, the nonlinear term of Eq.(27) is
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nonvanishing either when we mix modes propagating in the
same direction or when they have different wave numbers.
Further properties of this nonlinear interaction can be de-
rived by calculatingfszd, that is,

fszd = ihm1sB1
+B2

+* − B1
+*B2

+d + m1sB1
−B2

−* − B1
−*B2

−d + m2sB1
−B2

+*

− B1
−*B2

+d + m2sB1
+B2

−* − B1
+*B2

−dj. s41d

This expression shows thatfszd vanishes even though we
assume the presence of the four wave packets, unless there
exists a phase mismatch between two of the wave packets.
This expression also shows that another spreading solution
(without self-focusing) of Eq. (27) is obtained if we take the
same amplitude for all the wave packetsB1

+=B2
+=B1

−=B1
+ and

the phase mismatch between the right propagating wave
packetsB1

+B2
+* −B1

+*B2
+ equal to minus that of the left propa-

gating ones −sB1
−B2

−* −B1
−*B2

−d.
As a simple example of a self-focusing solution, let us

restrict ourselves to considering only two propagating eigen-
modesB2

+=expsiazdB1
+ having a phase mismatcha. If we

take only one transverse coordinate amplitude, we arrive at

2ik0]zB1
+ + k0

2sn1
+ + n2

+ − a/k0dB1
+ + k0

2hszd]x,xB1
+

− 4k0
2m1

2s2 sin2sazduB1
+u2B1

+ = 0, s42d

where

hszd =
1

h2
hfc22r1

2 + c12r2
2 + 2c52r1r2 cossazdgcos2sqzd

+ fc21r1
2 + c11r2

2 + 2c51r1r2 cossazdgsin2sqzd

+ c53r1r2 sinsazdsins2qzdj. s43d

Then, recalling thatB1
+=A1

+ expsik0n1
+zd and introducing

the variableG=A1
+ expf−sik0/2dsn2

+−a /k0dzg we find the fol-
lowing nonlinear Schrödinger equation with spatially depen-
dent coefficients:

i]zG +
k0

2
hszd]x,xG − 2k0m1

2s2 sin2sazduGu2G = 0. s44d

It is necessary to recall that, as said above, the amplitude
G in the previous equation is dimensionless with normaliza-
tion e0.

Equation(44) can be rewritten in terms of dimensionless
variables as

i]z8G +
1

2
Dsz8d]x8,x8G − gsz8duGu2G = 0, s45d

x8 ;
x

x0
, z8 ;

z

z0
, s46d

wherex8;x/x0, z8;z/z0. Here x0 and z0 are space scales
given by

x0
2 ;

1

2k0
2m1

2s2, z0 ;
1

2k0m1
2s2 , s47d

and

Dsz8d ; k0
2hsz8d, qz→ 2pSz0

p
Dz8, az→ az0z8,

s48d

gsz8d ; sin2saz0z8d,

and the sample width is nowL8=L /z0. It is interesting to
mention that in the case of a standard NLS equationx0 rep-
resents the width of the optical stripe at which the self-
focusing and the spatial diffraction balance each other. How-
ever, in our case there exists a longitudinal spatial
dependence in the equation’s coefficients which makes the
width stripe oscillate with a spatial scalez0.

Again, to simplify notation, in what follows we suppress
the prime in Eq.(45).

A. Numerical solution method

The numerical procedure, called the split-step method, to
solve the self-focusingfgszd,0g NLS equation when its co-
efficients are constants is well established(see, for example,
[19,22]). Here, we extend this method to consider the defo-
cusing casefgszd.0g such that both coefficientsDszd and
gszd arez dependent. Following the original papers[23,24],
the dark soliton of the NLS equation is given by the follow-
ing hyperbolic tangentprofile:

Gsx,zd = A0 tanhFÎ gszd
Dszd

A0xG + iÎ1 − A0
2, s49d

whereA0 is an arbitrary amplitude such that the pulse width
is proportional toA0

−1ÎDszd /gszd. Notice from this expres-
sion that the initial pulse is localized atz=0 whose mass
center is also atx0=0.

We assume the initial profile of Eq.(49) to integrate Eq.
(45) numerically by using the split-step method which was
performed using a lattice array whose transverse and longi-
tudinal steps areDx=10/32 andDz=1/8000.

Our results were obtained by using values for a sample
with pitch p=0.29mm, width L=5.2 mm, dielectric permit-
tivities ei=2.62, e'=2.31, and elastic constantK=5.2
310−12 N. The cholesteric liquid crystals used were made by
mixing Merck ZLI 2293 liquid crystals and ZLI 811 chiral
dopants in the ratio of 2:1[25]. We restrict our calculation to
values within the visible range and outside of the band gap.
It is well known that in the visible range the magnetic aniso-
tropy ma is nearly equal to zero; we here takema=0.1.

From the third term in Eq.(44) we obtain the nonlinear
refractive indexn2

chol as [19]

n2
chol =

«0m1
2p2

32p2K2
. s50d

For the parameter values given above and optical wave-
lengthl0=0.5 mm, n2

chol=3.85310−23skm/Vd2, which is two
orders of magnitude smaller than in nematics[n2

nem=1.43
310−21skm/Vd2 [26]] but five orders larger thann2

SiO2=1.2
310−28skm/Vd2. This shows the existence of the expected
giant nonlinearity for liquid crystals[1]. It also indicates how
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the twisted structure of the cholesteric liquid crystal, for
which the elastic energy density is larger than that of nemat-
ics, does not allow one easily to distort the sample, and as a
consequence its nonlinearity is smaller than that of nematics.

The nonlinear refractive indexn2
chol is related to the wave-

length l0, in a nontrivial way, through the coefficientm1
2,

which is plotted in Fig. 2. As can be seen, this coefficient
diverges at both band edges:lmin=pÎe'm' and lmax

=pÎeimi. This fact can be shown directly by expanding
m1

2sld aroundlmin andlmax. It yields

m1
2sldl→lmin,max

< ÎpHxmins− l + lmind−1/2,

xmaxsl − lmaxd−1/2,
J s51d

wherexmin,max are given in Appendix C. To understand intu-
itively why the system shows these divergences, it is conve-
nient to remark that the Poynting vector of two of the linear
eigenmodes vanishes precisely at the band edges so that the
energy flux is stopped there, the cholesteric distortion is the
largest, and the nonlinearity as well. Strictly speaking these
divergences are to be replaced by maxima if the realistic
small absorption of cholesterics were taken into account.
This analysis exhibits how the nonlinear effects are to be
enhanced and have their largest response for the band edge
wavelengths. Indeed, these results are in qualitative agree-
ment with the mirrorless cholesteric lasing experiments[27]
in which the exciting laser beam and the sample emission
wavelengths almost coincide with the reflection band edges.

We should also mention that, in contrast to the en-
hancement of the nonlinear effects in the band edges, there
exists a specific valuelv where m1

2 vanishes, that is to
say, the nonlinearity disappears and the Eq.(44) simply
transforms in a dispersion linear equation. Explicitly,lv
=pÎse'm'ea

2−eimima
2d / fsea+madsea−madg=0.434mm.

An important quantity that characterizes these dark soli-
tons is the powerPs required to generate them, which

amounts to the power transported by the solitons. It can be
shown that[19]

Ps =
1

2
«0cs0E0

2, s52d

wheres0 is the transverse area of the sample and initial am-
plitude E0 is related with the soliton space widthx0 through
the relations(47) by

E0 =
l0

x0
Î 8K2

«0m1
2p2 =

l0

2px0
Î 1

n2
chol.

If we take the stripe thicknessx0=5 mm ands0=400mm2,
we obtainE0=2.563106 V/m and hence the power isPs
=3.48 W, which can be produced by a laser of moderate
power. We should mention thatPs is roughly one order of
magnitude larger than the power used to induce spatial soli-
ton in nematics[7]. Taking into accountPs and a beam waist
20 mm we estimate the longitudinal space lengthz0=3.1
310−4 m which is more than one order of magnitude larger
than x0. Thus, to observe this longitudinal oscillation it
would be required to have a large sample. We should recall
that this is indeed a dark soliton so that these dimensions
characterize a lower energy density region immersed within
the path of the incident beam.

As said above, the parameter expansions2 must be suffi-
ciently small to validate our results. In effect, by substituting
the previously given values we obtains2=0.003. Thus, the
wave packet that we are dealing with is a narrow wave
packet of widthk=Îs2=0.054 around the central wave vec-
tor k0.

As can be noted from Eq.(45), the coefficientsD andg
depend on the wavelengthl0. Figure 3 show this dependence
evaluated at one of the multiplez positions where these os-
cillatory co-efficients have their maximafzmax=p / s2az0dg.
Notice that these coefficients are of the same order of mag-

FIG. 2. Plot of dimensionless coefficientm1
2sld as a function of

wavelengthl. The hatched region represents the band gap which
ranges fromlmin=0.441mm to lmax=0.492mm. Here m1

2slvd=0
whenlv=0.434mm.

FIG. 3. Plot of dimensionless coefficientsDszmax,ld and
gszmax,ld as functions of wavelengthl. The value of zmax is
choosen so thatgszmax,ld has a maximum.
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nitude in such a way that there exists a balance between
self-focusing or nonlinearity and diffraction of the wave
packet.

Finally, Fig. 4 shows various dark soliton profiles calcu-
lated from Eq.(45) as a function ofz. As discussed above
Eq. (45) predicts that each transverse profile of our solution
has a different widthb which oscillates withz, reaching a
maximum valuebmax=x0=5 mm. Notice that, due to the bal-
ance between nonlinearity and diffraction, the average effect
on the incident pulse is to maintain its hyperbolic-tangent-
like profile as it extends in thez direction.

B. Variational approximation method

This formalism starts by postulating a trial analytical
function or ansatz. In the case of the NLS equation a com-
monly adopted ansatz[24,28] that approximates a perturbed
soliton is

Gsx,zdansatz= B tanhfFsx − x0dg + iA,

A2 + B2 = 1. s53d

The variablex represents the transverse coordinate and
the parameters are allowed to be functions of the evolution
variablez. B is the real amplitude,F−1 represents the pulse
width, andx0 is the position of the mass center. Governing
equations for the evolution of free parameters can be ob-
tained by calculating aneffective Lagrangian Lef f by means
of straightforward integration of theLagrangian densityL
on the transverse coordinates to finally minimizeLef f with
respect to these parameters. The solution obtained from the
differential equations permit us to know the system behavior
[29].

A straightforward analysis shows that a direct application
of the variational formalism using the standard Lagrangian
densityL of the NLS equationfgszd.0g, does not work[24]
so that this method should be modified, for instance, using

renormalized integrals of motion[30] from which an appro-
priate Lagrangian density can be obtained to derive Eq.(45)
for the caseDszd=gszd=1. Here, we consider the case in
which Dszd is a function ofz and gszd=cte. Renormalizing
Eq. (45) by makingG→G exps−igzd yields

i]zG +
1

2
Dszd]x,xG − gsuGu2 − 1dG = 0, s54d

whose appropriate Lagrangian density is

L =
i

2
sG * G,z − GG,z

* dS1 −
1

uGu2D
−

1

2
DszduG,xu2 −

1

2
gszdsuGu2 − 1d2. s55d

Now, substitution ofGsx,zdansatzinto L and integration on
the transversal coordinateLef f=e−`

` LsGddx leads us to the
effective Lagrangian

Lef f = 2x08F− AB+ tan−1SB

A
DG −

2

3
SB2FD +

B4

F
gD .

s56d

The corresponding equations of motion may be obtained
from the Euler-Lagrange equations

]Lef f

]pj
−

d

dz

]Lef f

]pj8
= 0, pj ; x0,F,B, pj8 ; ]zpj ,

so that we finally arrive at the following results:

B8szd = 0,

x08szd = ÎgDszdAszd,

Fszd =Î g

Dszd
Bszd, s57d

which coincide with those given by the analytical solution in
the caseDszd=cte.

As mentioned above, the pulse width is given byF−1szd
=ÎfDszd /ggB−1szd. Taking into account that within a sample
of width L there are several spatial periodsp, the pulse width
will show such oscillations; thus we can assume that the
solution G will just be perturbed by the average of such
oscillations. As a result we can use the trial solution(53)
with variable parameters(57) and average valuesD
;kDszdl, g;kgszdl,

D ;
1

2
k0

2S 1

h2
Dfsc22 + c21dr1

2 + sc12 + c11dr2
2g, s58d

g ;
1

2
. s59d

After calculating the average valuesD;kDszdl, g
;kgszdl in Eq. (45) we arrive at the nonlinear Schrödinger
equation with constant coefficients whose exact solution is
given by Eq. (49). Direct comparison of both solutions

FIG. 4. The plot shows a dark soliton propagating throughout
the sample of dimensionless width equal toL /z0=1.6310−2. Here
we have taken amplitudeA0=1.
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shows that the numerical and variational ones are in good
agreement.

VI. SUMMARY AND PERSPECTIVES

We derived an amplitude equation for describing the
weakly nonlinear interaction between the four wave packets
whose central wave number is centered around those of the
linear electromagnetic modes characterizing a helical struc-
ture. We showed that under certain approximations the gov-
erning amplitude equations can be derived from a Lagrang-
ian density and calculated their conserved quantities by using
their symmetries and Noether’s theorem. We also showed
that the analogs to the two first integrations of the hierarchy
satisfying the NLS equation are satisfied by our vector wave
packet.

We discussed how the nonlinear term of the envelope
equation(27) is such that there exist various exact solutions
which are not submitted to self-focusing. Under specific con-
ditions of phase mismatch and amplitude relations for a two-
component wave packet we derived a NLS equation with
z-dependent coefficients. We found both numerically and
analytically(but approximated) a dark soliton solution which
has a longitudinal oscillating structure that, due to the bal-
ance between nonlinearity and diffraction, the average effect
on the incident pulse is to maintain its hyperbolic-tangent-
like profile as it extends in thez direction.

For the solitonlike soliton we obtained some important
physical properties as such the nonlinear refractive index
n2

chol, which we found to be two orders of magnitude smaller
than that of nematics but five orders larger than typical val-
ues forn2

SiO2. Hence, our result shows the existence of the-
expected giant nonlinearity for liquid crystals. Additionally,
we showed that this giant nonlinearity is enhanced in both
edges of the band gap as a direct consequence of the fact that
the Poynting vector of two of the linear eigenmodes vanishes
precisely there, so that the energy flux is stopped and the
cholesteric distortion is the largest as well as the nonlinearity.
Qualitatively, this behavior is in agreement with the mirror-
less cholesteric lasing experiments in which the exciting la-
ser beam and the sample emission wavelengths almost coin-
cide with the reflection band edges. Of course, our analysis
was not performed to describe the interaction of the choles-
teric with two beams having different frequencies like the
systems reported in the mentioned experiments; however, the
maxima ofn2

chol at the band edges makes plausible a better
theoretical description which remains to be assessed.

We estimated the necessary powerP to generate these
dark solitons. We found that these can be generated by a
laser of modest power, namely, of the order of,3.5 W.

Finally, we showed that effectively we dealt with a nar-
row wave packet of widthk=0.054 around the central wave
vectork0.

Our model has not take into account explicitly the un-
avoidable linear and nonlinear absorption effect. We have
also ignored the transitory effect induced by the director re-
orientation and hydrodynamical coupling coming with these
effects.

APPENDIX A

Maxwell’s equations under the Marcuvitz-Schwinger rep-
resentation Eq.(16) are written in terms of the matricesJ4
andL, which are defined as

J4 = KronsJ2,J2d =1
0 0 0 1

0 0 − 1 0

0 − 1 0 0

1 0 0 0
2 , sA1d

L = gtt − sDt + Gt + gtzdgzz
−1sDt

† + Gt
† + gztd, sA2d

with

gtt = Sgxx gxy

gyx gyy
D, gtz = Sgxz

gyz
D, gzt = sgzx gzyd ,

Dt = sik0d−1kronsJ2]t,J2d, Gt = kronsJ2kt,J2d,

]t = s]x ]y dT, kt = skx ky dT, sA3d

J2 = S 0 1

− 1 0
D, J4 = J4

−1 = J4
T. sA4d

k̄= k̄/k0 is the normalized incident wave vector, the super-
script † indicates the adjoint Hermitian, the elementsgi j
si , j =x,y,zd of gtt, gzt, gtz are the following 232 matrices:

gi j = S«i j 0

0 mi j
D , sA5d

and KronsA,Bd represents the Kronecker product with
elementsaijB. «i j and mi j represent the elements of the
uniaxial dielectric and magnetic tensors shown above by
Eqs.(4) and (5).

If we restrict our system to the case when the electromag-
netic wave propagates in directionz through a sample of
chiral material thenNt=0 and gzt=gtz=0. In this way the
matrix L reduces to

L = gtt − Dtgzz
−1Dt

†. sA6d

APPENDIX B

The linear system defined by Eq.(29) which describes the
linear propagation through a cholesteric liquid crystal can be
expressed as dsT·ad /dz= isv /cdA·sT·ad, where T·a
=sc1

+,c1
−,c2

+,c2
−d is the matrix whose columns are the nor-

malized eigenvectorsck
±=se1,e2,h1,h2d sk=1,2d of the ma-

trix A given by [18]

A =1
0 − iq̃ 0 m'

iq̃ 0 − mi 0

0 − e' 0 − iq̃

ei 0 iq̃ 0
2 . sB1d

Heree1,e2 andh1,h2 are the components of the electromag-
netic vectors in a rotating frame having one of the axesx
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along the optical axis;ei andmi are the principal values ofe
and m, respectively;q̃=qc/v, whereq=2p /p and p is the

helix pitch. If we omit the factor exps−ivtd, the eigenwaves
of A are sT·adk

±=ck
± expsivnk

±z/cd where

T =1
n1u1/r1 − n1u1/r1 n2u2/r2 − n2u2/r2

− 4in1q̃e/r1 4in1q̃e/r1 − 4in2q̃e/r2 4in2q̃e/r2

− iq̃su2 − 4eimd/r1 − iq̃su2 − 4eimd/r1 − iq̃su1 − 4eimd/r2 − iq̃su1 − 4eimd/r2

s4q̃ 2e + u1eid/r1 s4q̃ 2e + u1eid/r1 s4q̃ 2e + u2eid/r2 s4q̃ 2e + u2eid/r2

2 , sB2d

a =1
expsik0n1

+zd 0 0 0

0 expsik0n1
−zd 0 0

0 0 expsik0n2
+zd 0

0 0 0 expsik0n2
−zd
2 , sB3d

andvnk
± /c sk=1,2d are the corresponding eigenvalues given

by

nk
+2 = − nk

− = a1 + q̃ 2 + s− dku/2. sB4d

In Eq. (B2) we have used the notationu;Î4a2q̃
2+ec

2, u1
;−u+ec, u2;u+ec, a1;seim'+e'mid /2, a2;2a1+eimi

+e'm', and ec;eim'−e'mi, e;sei+e'd /2, m=smi

+m'd /2. Each eigenvector ofA appearing in the columns of
T, Eq. (B2), is normalized such that thez component of the
Poynting vector is unity. Thus, the corresponding norms are

rk ; Îck
±J4ck

±* = Î2nkfuk
2ei + 4q̃ 2esuk − u2,1+ 4eimdg,

k = 1,2.

Notice that for realei and mi, n2 is real according to Eqs.
(B4), and the wave vectorsk0n are real or purely imaginary.
Only the modes 1± show a band gap forv within
v1,Ã,v2, wherev1=qc/Îeimi, v2=qc/Îe'm'.

APPENDIX C

Here we find explicit expressions for the matricesMt
and MNL involved in the vector envelope equation given
by Eq. (27). By inserting U, T, M1, and Dt from
Eqs. (20), (B2), (19), and (A3) into expressionsMt
=T†·U ·Dt ·gzz

−1·Dt
†·U−1·T and MNL=T†·U ·M1·U−1·T, we

arrive at

Mt = ML1]xx + ML2]yy + ML3]xy, sC1d

where the Hermitian matricesML1, ML2, andML3 are defined
by

ML1 =1
F11 F13 F15 F16

F13 F11 F16 F15

F15
* F16

* F12 F14

F16
* F15

* F14 F12

2 ,

ML2 =1
F21 F23 F25 F26

F23 F21 F26 F25

F25
* F26

* F22 F24

F26
* F25

* F24 F22

2 , sC2d

ML3 =1
F31 F33 F35 F36

F33 F31 F36 F35

F35
* F36

* F32 F34

F36
* F35

* F34 F32

2, and

MNL = i1
0 0 − m1 − m2

0 0 − m2 − m1

m1 m2 0 0

m2 m1 0 0
2 , sC3d

Here the componentsmi andFij of these matrices are given
by

m1,2

;
q̃su1 − u2dh±4n1n2eea + f4q̃ 2e + eisu1 + u2 − 4eimdgmaj

r1r2
,

F1j ;
scj2 cos2 qz+ cj1 sin2 qzd

h
, sC4d

F2j ;
scj1 cos2 qz+ cj2sin2 qzd

h
, j = 1,2,3,4,

F3j ;
scj3 cosqzsinqzd

h
, sC5d

F1k ;
ck2 cos2 qz+ ck1 sin2 qz− ick3 cosqzsinqz

h3
,
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F2k ;
ck1 cos2 qz+ ck2 sin2 qz+ ick3 cosqzsinqz

h3
, k = 5,6,

F3k ;
ck4 cosqzsinqz− ick3ssin2 qz− cos2 qzd

h3
sC6d

with

cs1,2d1 ; 16n1,2
2 q̃ 2e2e' + s4q̃ 2e + u1,2eidm',

cs1,2d2 ; n1,2
2 u1,2

2 e' + q̃ 2su2,1− 4eimd2m',

cs1,2d3 ; 2n1,2
2 su1,2

2 − 16q̃ 2e2de' − 2f16q̃ 4e2 + u1,2
2 ei

2

− q̃ 2su2,1
2 − 8u1,2eei − 8u2,1eim + 16ei

2m2dgm',

cs3,4d1 ; − 16n1,2
2 q̃ 2e2e' + s4q̃ 2e + u1,2eidm',

cs3,4d2 ; − n1,2
2 u1,2

2 e' + q̃ 2su2,1− 4eimd2m',

cs3,4d3 ; − 2n1,2
2 su1,2

2 − 16q̃ 2e2de' − 2f16q̃ 4e2 + u1,2
2 ei

2

− q̃ 2su2,1
2 − 8u1,2eei − 8u2,1eim + 16ei

2m2dgm',

cs5,6d1 ; ± 16n1n2q̃
2e2e' + s4q̃ 2e + u1eids4q̃ 2e + u2eidm',

cs5,6d2 ; ± n1n2u1u2e' + q̃ 2su1 − 4eimdsu2 − 4eimdm',

cs5,6d3 ; q̃ 2su1 − u2dh±4n1n2ee'

+ f4q̃ 2e + eisu1 + u2 − 4eimdgm',

cs5,6d4 ; ± 2n1n2su1u2 − 16q̃ 2e2de' − 2s16q̃ 4e2 + u1u2ei
2dm'

− 2q̃ 2h4eif− 4eim
2 + u2se + mdg

+ u1f− u2 + 4eise + mdgjm', sC7d

h = H h1 if j odd,

h2 if j even,
J

h1 ; k0
2r1

2e'm', h2 ; k0
2r2

2e'm', h3 ; k0
2r1r2e'm',

sC8d

xmin =
seimi − e'm'd1/2

se'm'd1/4

ma
2

t2
se'm' − eimidsa1 + e'm'd,

xmax=
seimi − e'm'd1/2

seimid1/4

ei
2ea

2

25/2e2 ,

wheret=25/4h2e'm2+em'feimi−e'sm'+2mdgj1/2.
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